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QED in 3-dimensions

Non-compact QED3 on Euclidean ℓ3 torus

Lagrangian

L = ψσµ (∂µ + iAµ)ψ +mψψ +
1

4g2
(∂µAν − ∂νAµ)

2

ψ → 2-component fermion field

g2 → coupling constant of dimension [mass]1

Scale setting ⇒ g2 = 1

massless Dirac operator: C = σµ (∂µ + iAµ)
A special property for “Weyl fermions” in 3d: C † = −C

Theoretical interests: UV complete, super-renormalizable and candidate for
CFT

Aside from field theoretic interest, QED3 relevant to high-Tc cuprates.
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QED in 3-dimensions

Parity Anomaly and its cancellation

Parity: xµ → −xµ

Aµ → −Aµ; ψ → ψ; ψ → −ψ

mψψ → −mψψ ⇒ Mass term breaks parity (i.e.) the effective fermion action
detC transforms as

±| detC |e iΓ(m) → ±| detC |e iΓ(−m) reg
= ±| detC |e−iΓ(m).

When a gauge covariant regulator is used,

Γ(0) 6= 0 (parity anomaly, which is Chern-Simons).

With 2-flavors of massless fermions, anomalies cancel when parity covariant
regulator is used. We will only consider this case in this talk.
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QED in 3-dimensions

Parity and Gauge invariant regularization for even N

Two flavors of two component fermions: ψ and χ.

Define parity transformation: ψ ↔ χ and ψ ↔ −χ.

Fermion action with 2-flavors

Sf =
(

ψ χ
)

[

C +m 0

0 −(C +m)†

](

ψ
χ

)

If the regulated Dirac operator for one flavor is Creg and the other is−C †
reg,

theory with even fermion flavors is both parity and gauge invariant.

Massless N-flavor theory has a U(N) symmetry:

(

ψ
χ

)

→ U

(

ψ
χ

)

U ∈ U(2).

Mass explitly breaks U(N) → U

(

N

2

)

× U

(

N

2

)

.
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QED in 3-dimensions

Parity-covariant Wilson fermions

Regulate one using X = Cn − B +m and the other with −X † = Cn + B −m :

Hw =

[

0 X (m)

X † (m) 0

]

m → tune mass to zero as Wilson
fermion has additive
renormalization

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-0.4 -0.2  0  0.2  0.4  0.6  0.8
λ 1

m

Zero mass

Advantage: All even flavors N can be simulated without involving square-rooting.
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QED in 3-dimensions

Factorization of Overlap fermions

In 3d, the overlap operator for a single four component fermion (equivalent to
N = 2) factorizes in terms of two component fermions:

Hov =







0
1

2
(1 + V )

1

2
(1 + V †) 0






; V =

1√
XX †

X

Advantages: All even flavors can be simulated without square-rooting; exactly
massless fermions;
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Ways to break scale invariance of QED3 dynamically

A few ways . . .

Spontaneous breaking of U(N) flavor symmetry, leading to a plethora of
low-energy scales like Σ, fπ, . . .

Particle content of the theory being massive

Presence of typical length scale in the effective action: V (x) ∼ log
( x

Λ

)

U

(

N

2

)

×U

(

N

2

)

U(N)

Critical scale invariant (conformal?)Condensate

N

Parity-even condensates: ψ ψ − ψ ψ , ψ ψ − ψ ψ , ψ ψ + ψ ψ
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Ways to break scale invariance of QED3 dynamically

Spontaneous breaking of U(N) symmetry

Large-N gap equation: Ncrit ≈ 8 (Appelquist et al . ’88)

Assumptions: N ≈ ∞, no fermion wavefunction renormalization, and feedback

from Σ(p) in is ignored.

Free energy argument: Ncrit = 3 (Appelquist et al . ’99)

Contribution to free energy: bosons→ 1 and fermions→ 3/2

IR ⇒ N2

2
Goldstone bosons + 1 photon

UV ⇒ 1 photon + N fermions

Equate UV and IR free energies
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Ways to break scale invariance of QED3 dynamically

Recent interest: Wilson-Fisher fixed point in d = 4− ǫ

Pietro et al .’15

IR Wilson-Fisher fixed point at
Ng2

∗ (µ)

µǫ
= 6π2ǫ

Compute anomalous dimensions of four-fermi operators

OΓ =
∑

i,j

ψiΓψiψjΓψj(x)

Extrapolate to ǫ = 1 and find OΓ’s become relevant at the IR fixed point
when N ≈ 2-4.

Caveats: mixing with F 2
µν was ignored. Large-N calculation (Pufu et al .’16)

seems to suggest that with this mixing, the dimension-4 operators remain
irrelevant.
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Ways to break scale invariance of QED3 dynamically

Previous attempts using Lattice

Hands et al ., ’04 using square-rooted staggered fermions.

Condensate as a function of fermion mass.
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Ways to break scale invariance of QED3 dynamically

Previous attempts using Lattice

Hands et al ., ’04 using square-rooted staggered fermions.

mδ +m

Method works if it is known a priori that condensate is present; A possible critical
mδ term, which would be dominant at small m, could be missed.
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Ruling out low-energy scales in QED3
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Ruling out low-energy scales in QED3

Simulation details

Parameters

L3 lattice of physical volume ℓ3

Non-compact gauge-action with lattice coupling β =
2L

ℓ

Improved Dirac operator was used

Smeared gauge-links used in Dirac operator

Clover term to bring the tuned mass m closer to zero

Statistics

Standard Hybrid Monte-Carlo

14 different ℓ from ℓ = 4 to ℓ = 250

4 different lattice spacings: L = 16, 20, 24 and 28

500− 1000 independent gauge-configurations
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Ruling out low-energy scales in QED3

Computing bi-linear condensate from FSS of low-lying
Dirac eigenvalues

(Wigner ’55)

Let a system with Hamiltonian H be chaotic at classical level.

Let random matrix T , and H have same symmetries: UHU−1

Unfold the eigenvalues i.e., transform λ→ λ(u) such that density of
eigenvalues is uniform.

λ(u) =

∫ λ

0

ρ(λ)dλ

The combined probablity distribution P(λ
(u)
1 , λ

(u)
2 , . . .) is expected to be

universal and the same as that of the eigenvalues of T
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Ruling out low-energy scales in QED3

Computing bi-linear condensate from FSS of low-lying
Dirac eigenvalues

Banks-Casher relation⇒ non-vanishing density at λ = 0

Σ =
πρ(0)

ℓ3
; where

∫ ∞

0

ρ(λ)dλ = ℓ3

Unfolding ⇒ λ(u) ≈ ρ(0)λ ∼ Σℓ3λ. Therefore, universal features are
expected to be seen in the microscopic variable z :

z = λℓ3Σ.

P(z1, z2, . . . , zmax) is universal and reproduced by random T with the same
symmetries as that of Dirac operator D. (Shuryak and Verbaarschot ’93)

Rationale: Reproduces the Leutwyler-Smilga sum rules from the zero modes
of Chiral Lagrangian.

Eigenvalues for which agreement with RMT is expected
/

Momentum scale
upto which only the fluctuations of zero-mode of Chiral Lagrangian matters:

zmax < Fπℓ (Thouless energy)
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Ruling out low-energy scales in QED3

RMT and Broken phase: Salient points

Scaling of eigenvalues:
λℓ ∼ ℓ−2

Look at ratios λi/λj = zi/zj . Agreement with RMT has to be seen without
any scaling.

The number of microscopic eigenvalues with agreement with RMT has to
increase linearly with ℓ
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Ruling out low-energy scales in QED3

Finite size scaling of eigenvalues: continuum limits
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Find continuum limit at each
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Lattice spacing effect using Wilson
fermions
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Ruling out low-energy scales in QED3

Agreement between Wilson and Overlap
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Ruling out low-energy scales in QED3

Absence of bi-linear condensate: λ ∼ ℓ−1−p and p 6= 2

-3

-2

-1

0

1

-7 -6 -5 -4 -3 -2 -1

lo
g
(λ
ℓ)

− log(ℓ)

N = 2 Continuum

λℓ ∼ ℓ−2

Ansatz:

log(λℓ) =
a− (p + b

ℓ ) log(ℓ)

1 + c
ℓ

Robustness: Changing ansatz to

λℓ ∼ ℓ−p
(

1 +
a

ℓ
+ . . .

)

changes

the likely p from 1 to 0.8.

λℓ ∝ ℓ−1 seems to be prefered.

The condensate scenario,
λℓ ∝ ℓ−2 seems to be ruled out.

0
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5
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χ
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F
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Ruling out low-energy scales in QED3

Eigenvalue density

λ ∼ ℓ−1−p ⇒ ρ(λ) ∼ λ(2−p)/(1+p) and Σ(m) ∼ m(2−p)/(1+p) DeGrand ’09

0

2

4

6

8
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12

0 1 2 3 4 5 6

ρ ∼ λ0.5
{

1 +O(λ3)
}

ρ
(λ
ℓ)

λℓ

ℓ = 128
ℓ = 160
ℓ = 250

ρ ∼ λ0.5 in the bulk
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Ruling out low-energy scales in QED3

N = 2, 4, 6, 8
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lo
g
(λ

1
ℓ)

log(ℓ)

N = 2

N = 4
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λℓ ∼ ℓ−2

Ansatz:

log(λℓ) =
a− (p + b

ℓ ) log(ℓ)

1 + c
ℓ

p decreases with N: trend⇒ p ≈ 2

N
p ≈ 1 is right at the edge of allowed
value from CFT constraints.
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Ruling out low-energy scales in QED3

Absence of condensate using Inverse Participation Ratio

For normalized eigenvectors of D

I2 =

∫

|ψ(x)|4d3x

Volume scaling
I2 ∝ ℓ−(3−η)

Condensate ⇒ RMT → η = 0.

Localized eigenvectors → η = 3.

Eigenvector is multi-fractal for other values.
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Ruling out low-energy scales in QED3

A multifractal IPR

A theory with condensate is analogous to a metal. Multifractality is typical at a
metal-insulator critical point.
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lo
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Ruling out low-energy scales in QED3

Spectrum of massless QED3

“Pion” : Oπ(x) = ψχ(x)± χψ(x)

“Rho” : Oρ(x) = ψσiχ(x)± χσiψ(x)

Theory with a scale:
〈

O(x)O(0)
〉

∼ exp {−Mx}

Scale-invariant theory:

〈

O(x)O(0)
〉

∼ 1

|x |δ f
(x

ℓ

)

−→ 1

|x |δ exp
{

−M
x

ℓ

}

Extract M by fits to correlators. To extract δ, one needs both ℓ large and
Mx ≪ ℓ. We do not have control over both scales.
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Ruling out low-energy scales in QED3

Spectrum of massless QED3

Effective mass shows a plateau as a function of x/ℓ— Scaling function is

exp
{

−M
x

ℓ

}
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Ruling out low-energy scales in QED3

Spectrum of massless QED3

As ℓ→ ∞, M has a finite limit for both π and ρ.

The plateau in M as a function of ℓ could imply the vanishing of β =
dg2

R(ℓ)ℓ

d log ℓ

near the IR fixed point as ℓ→ ∞ (i.e.) if M ∝ g2
R(ℓ)ℓ =

#g2ℓ

1 + g2ℓ
→ #

0
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8
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M
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π
ρ
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Ruling out low-energy scales in QED3

Absence of scale in log(x) potential

t × x Wilson loop → log(W) = A+ V (x)t

x

t
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Ruling out low-energy scales in QED3

Absence of scale in log(x) potential

If V (x) ∼ log
( x

Λ

)

, it would have a well defined limit at fixed x when ℓ→ ∞
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Ruling out low-energy scales in QED3

Absence of scale in log(x) potential

Instead, a scale invariant potential V (x) ∼ log
(x

ℓ

)
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The other extreme: large-Nc limit

Table of Contents

1 QED in 3-dimensions

2 Ways to break scale invariance of QED3 dynamically

3 Ruling out low-energy scales in QED3

4 The other extreme: large-Nc limit

5 Conclusions

Nikhil Karthik (FIU) lattice QED3 April 22, 2016 27 / 30



The other extreme: large-Nc limit

Finding bilinear condensate in large Nc in 3d

Pure non-abelian gauge theories in 3d have string tension. Questions: With
N flavors of fermions, do they have bilinear condensate? Critical N (or
different critical N’s) at each Nc where condensate and string tension vanish?

First step: Large Nc , where quenched approximation is exact.

Assume partial volume reduction for
1

ℓ
< Tc . We keep the lattice coupling

β < βc on 53 lattice with Nc = 7, 11, . . . , 37. Determine the eigenvalues of
the Hermitian overlap operator.
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The other extreme: large-Nc limit

Agreement with Non-chiral RMT

Quenched ⇒ ZRMT =

∫

e−TrT 2

dT ;T = T †
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The other extreme: large-Nc limit

A guess

String tension vanishes

1/NcNc = ∞ Nc = 1

Conformal
N

Condensate vanishes
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Conclusions

Conclusions

scale invariant (conformal?)

N
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